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With the increasingly fierce market competition, manufacturing enterprises have to continuously improve their com-
petitiveness through their collaboration and labor division with each other, i.e. forming manufacturing enterprise collabo-
rative network (MECN) through their collaboration and labor division is an effective guarantee for obtaining competitive
advantages. To explore the topology and evolutionary process of MECN, in this paper we investigate an empirical MECN
from the viewpoint of complex network theory, and construct an evolutionary model to reproduce the topological properties
found in the empirical network. Firstly, large-size empirical data related to the automotive industry are collected to con-
struct an MECN. Topological analysis indicates that the MECN is not a scale-free network, but a small-world network with
disassortativity. Small-world property indicates that the enterprises can respond quickly to the market, but disassortativity
shows the risk spreading is fast and the coordinated operation is difficult. Then, an evolutionary model based on fitness
preferential attachment and entropy-TOPSIS is proposed to capture the features of MECN. Besides, the evolutionary model
is compared with a degree-based model in which only node degree is taken into consideration. The simulation results show
the proposed evolutionary model can reproduce a number of critical topological properties of empirical MECN, while the
degree-based model does not, which validates the effectiveness of the proposed evolutionary model.
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1. Introduction
Nowadays, manufacturing enterprises are facing great

challenges. Market demands are increasingly diversified and
customized, and customers have growing requirements and ex-
pectations to products.[1] A single enterprise is difficult to re-
spond promptly to the ever-changing market. Therefore, nu-
merous enterprises collaborate to improve competitiveness so
as to meet today’s challenges. The collaboration among en-
terprises mainly refers to the supply-and-demand relation. A
great number of enterprises tend to produce some specialized
product parts, which brings the deepening of specialization
and the division of labor. The collaboration and division of la-
bor among manufacturing enterprises establish a manufactur-
ing enterprise collaboration network (MECN). In MECN, only
the core business of an enterprise is maintained whereas other
businesses (e.g., design, manufacture, etc.) are outsourced,
thus gaining higher profits via its core competence as well
as meeting the market requirements for lower cost and quick
response.[2]

Recently, there has been considerable interest in the study
of collaboration networks.[3,4] Scholars have proposed topo-
logical analysis methods to explore such networks.[5–8] For ex-
ample, Ramasco et al.[5] studied the collaboration networks in
terms of evolving and self-organizing bipartite graph models.

Basole[8] examined the topological characteristics of interfirm
collaboration networks in the global electronics industry. It
was found the topological structure of networks plays an im-
portant role in learning network. As an effective approach to
exploring the topology of complex systems, the complex net-
work theory has received ongoing attention and it has been
put into application.[9] The MECN is a typical collaboration
network and it is getting more complicated with the enlarge-
ment of outsourcing. Some researches on MECN based on
complex network theory have been proposed.[10–12] Specifi-
cally, enterprises in MECN were abstracted as nodes and inter-
enterprise collaborations were abstracted as edges. With com-
plex network theory approach, they modeled the MECN struc-
tures from the macroscopic view, analyzed the relations be-
tween their macrostructure and functional property, such as
robustness, resistance to attack and risk spreading, and fo-
cused on the relations between two entities from the micro-
scopic view.[13]

However, due to the difficulties in acquiring large-scale
empirical data sets, most of these related studies are theo-
retical, and there is a lack of empirical studies to validate
these theoretical studies. Additionally, some empirical studies
on real-life networks have shown that many networks exhibit
common topological properties.[14–18] For example, Gang et
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al.[14] concluded the urban supply chain network of agricul-
tural products has scale-free and high disassortative proper-
ties. Liao et al.[17] found that the smartphone supply chain
network had small-world feature with scale-free degree dis-
tribution. Scholars also have proposed a great many of net-
work models to capture the properties of real networks, such
as Watts–Strogatz model, Barabási-Albert model, etc.[19,20]

Based on these network models, the evolutionary process of
real networks is available. Therefore, to explore the topology
and evolutionary process of MECN, it is necessary to investi-
gate an empirical MECN and construct an evolutionary model
to reproduce the topological properties found in the empirical
network.

In reality, the Barabási-Albert model has limitations in
explaining late-comers acquiring links relatively quickly. The
fundamental reason is that the model only takes the node de-
gree as the only metric to drive network evolution, without
considering the intrinsic properties of the nodes. In network
science this property is called the fitness of the node.[21] The
concept of node fitness can be thought of as the amalgama-
tion of all the attributes of a given node that contribute to its
propensity to attract links.[22] It has been widely accepted that
the fitness-based attachment models (such as the Bianconi–
Barabási model, etc.) are more realistic than the classical
Barabási-Albert model in capturing the growth process of real
world networks.[23–28] In the MECN, manufacturing enter-
prises have various intrinsic attributes, such as geographic lo-
cation, scale, goodwill, etc. The amalgamation of these empir-
ical attributes can be defined as fitness. It plays a very active
role in attracting collaboration when constructing the evolu-
tionary model. Additionally, fitness in most network models
is randomly allocated from a specified probability distribution,
such as exponential and log-normal distribution.[23,29] There-
fore, it is more reasonable to obtain the fitness based on the
collected empirical attributes and allocate the fitness to nodes.

From the above, in this paper we empirically investigate
MECN to explore the topology and construct an evolutionary
model to depict the evolutionary process of MECN. Firstly,
a great many of empirical data are collected to construct an
MECN. From the viewpoint of complex network theory, the
topological properties of MECN are analyzed. Then, the evo-
lutionary process of MECN is investigated. An evolutionary
model based on fitness preferential attachment and entropy
technique for order preference by similarity to an ideal solu-
tion (entropy-TOPSIS) is proposed. Finally, simulation results
validate the effectiveness of the proposed network model.

The remainder of this paper is organized as follows. In
Section 2 an empirical investigation of MECN is carried out.
In Section 3, the MECN evolutionary model based on fit-
ness preferential attachment and entropy-TOPSIS is proposed.
In Section 4, the simulation experiment and model analysis
are described. Finally, some conclusions are drawn from the
present study in Section 5.

2. Empirical investigation of MECN
Automobile is a complex product composed of exceeding

thousands of parts. Correspondingly, numerous manufactur-
ing enterprises are involved to form a huge automotive MECN.
In this section, an empirical MECN is investigated. First, the
data collection is described. Then, the empirical MECN is
constructed. Finally, the topological properties of MECN are
analyzed from the viewpoint of complex network theory.

2.1. Data collection

We use the online database operated by the Gasgoo Auto-
motive Community as our main source (http://i.gasgoo.com/).
This database is an authoritative automotive industry chain
supply and demand platform in China. It provides informa-
tion about numerous firms in Chinese automotive industry, and
holds information about various attributes of each firm, such
as name, geographical location, product list, supporting client
firms, etc. The database allows users to search for firms by
name, products, and clients.

The data acquisition was conducted during March–May
2018. First, original equipment manufacturer (OEM) informa-
tion for each car brand was collected from Sohu News. Then,
using the OEM named input item in the Gasgoo Automotive
Community, related part supplier information was collected.
Specific enterprise information includes name, found year, lo-
cation, registered capital and supporting manufacturers. Fi-
nally, due to the incompleteness of some data, enterprise at-
tribute data were supplemented from https://xin.baidu.com/.
Additionally, the number of intellectual properties and the
number of risk warnings were collected for enterprises. By
following this procedure, information about 245 OEMs and
6790 part suppliers were acquired. The number of connections
between them was 20938. The initial part supplier information
(a portion) is shown in Table 1. The detailed information is il-
lustrated below:

(i) No: Each manufacturing enterprise is represented by a
unique number started from 1.

(ii) Found year: Each manufacturing enterprise has its
own found year. That is an integer value.

(iii) Location: The province in which each manufactur-
ing enterprise is located. The average distance from the enter-
prise’s province to each province is calculated and used.

(iv) Registered capital: It represents the registered capital
of each manufacturing enterprise. The data of different units
are uniformly converted into CNY unit.

(v) Number of intellectual properties: It is the total num-
ber of patents, copyrights, trademarks, etc. That is an integer
value.

(vi) Number of risk warnings: It is the total number of ad-
ministrative penalties, judgment documents, stock freeze, etc.
That is an integer value.
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Table 1. Information about part suppliers (a portion).

No Part suppliers Found year Location Registered capital
Number of Number of

intellectual properties risk warnings

1 Guangzhou Qicheng Auto Parts Co., Ltd. 2013 Guangdong 2.0×106 CNY 1 6

2 Shenyang Pinghe Valeo Automotive Transmission System Co., Ltd. 2013 Liaoning 3.5×107 USD 16 4

3 Shanxi Zhongjin Industrial Machinery Co., Ltd. 1996 Shanxi 8.0×106 CNY 29 1

4 Conde Ryan electromagnetic technology (China) co., Ltd. 2005 Jiangsu 9.8×106 EUR 23 0

5 Shanghai saks powertrain components system co., Ltd. 2001 Shanghai 1.4×107 USD 89 4

2.2. Construction of MECN

The empirical MECN is composed of two sets of nodes (OEMs and part suppliers), and links between these two kinds
of nodes (but no links between the same kind of nodes). Such a network is called a bipartite network. A bipartite network
structure is shown in Fig. 1. Generally, MECN can be denoted as G = {M,S,E} , where M = {m1,m2, . . . ,mi, . . . ,mnM} and
S =

{
s1,s2, . . . ,s j, . . . ,snS

}
are the disjoint sets of the OEM nodes and part supplier nodes respectively, nM and nS are the number

of OEM nodes and part supplier nodes respectively, and E is the set of edges connecting OEM nodes and part supplier nodes. The
OEM nodes only connect to part supplier nodes and vice versa. Mathematical analysis of a network requires it to be represented
through an adjacency matrix. The MECN can be described using an adjacent matrix R =

{
ai j
}

nM×nS
, where ai j is the number of

connections between OEM nodes and part supplier nodes,

ai j =

{
1, if there is a connection between mi and s j, i ∈ nM and j ∈ nS,
0, otherwise. (1)

From the collected dataset, MECN is empirically con-
structed (Fig. 2). The number of OEM nodes and the num-
ber of part supplier nodes are 245 and 6790, respectively. The
number of edges is 20938.

O1

S1

O2 O3

S2

S3 S4

S5

S6

Fig. 1. Bipartite network structure.

Fig. 2. MECN visualization. Red nodes are OEMs and blue nodes are part
suppliers.

2.3. Topological properties of MECN

Real world complex networks exhibit various interesting
topological properties. These sets of topological measure-
ments provide a meaningful explanation for a network’s dy-
namical properties. In this subsection, a few important topo-
logical properties are considered, viz. average path length,
clustering coefficient, degree distribution, and assortativity.
The topological properties of empirical MECN are shown in
Table 2. Then, each topological property is introduced in de-
tail.

Table 2. Topological properties of empirical MECN.

Topological properties Result

OEMs 245
Part suppliers 6790
Edges 20938
Part suppliers per OEM 85.46
OEMs per part suppliers 3.08
Average path length L 3.755
Clustering coefficient c 0.253
Assortativity coefficient r −0.480
(one-mode projection on OEMs) −0.231
Assortativity coefficient rM

(one-mode projection on part suppliers) −0.021
Assortativity coefficient rS

OEM degree Max: 963 and Min: 1
Part supplier degree Max: 23 and Min: 1
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2.3.1. Average path length

The average path length presents an approach to charac-
terizing the spread of a network by calculating the average dis-
tance between any pair of nodes.[30] The distance di j between
node i and node j in the network is defined as the number of
edges on the shortest path connecting the two nodes. The aver-
age path length L is defined as the average of distance between
all pairs of nodes in the network,

L =
2

N (N−1)

N−1

∑
i=1

N

∑
j=i+1

di j, (2)

where N represents the number of nodes in the network.
It is found that although the number of nodes in many

real networks is huge, the average path length of the network
is quite small. That is, the average path length will increase to
some extent as the network size increases. From Table 2, the
average path length L is 3.78. It is quite small relative to the
scale of the network.

2.3.2. Clustering coefficient

For one-mode networks, the definition of clustering co-
efficient c is the ratio between the number of triangles ob-
served in one network and the total number of possible tri-
angles which may appear. For node i with ki neighbors the
total number of possible triangles is just the number of pairs
of neighbors given by ki (ki−1)/2. The clustering coefficient
c for node i is

c =
2ti

ki (ki−1)
, (3)

where ti is the number of triangles. While there are no tri-
angles in bipartite networks since no connections are allowed
between nodes of the same type. Some scholars transform bi-
partite networks into one-mode networks in order to be able to
analyze them. However, it generally loses some information
about the original bipartite network, and brings an inflation of
the number of edges and other drawbacks caused by projec-
tion. Hence, some definitions of the clustering coefficient in
the original bipartite network have been proposed. The mea-
suring of the overlap between neighborhoods of pairs of nodes
has been proposed in Ref. [31]. And the bipartite clustering
coefficient of node u is defined as

cu =
∑v∈N(N(u)) cuv

|N (N (u))|
, (4)

where N(u) represents the set of neighbors of u, N (N (u)) is
the second order neighbors of u in G excluding u, and cuv is
the pairwise clustering coefficient between node u and node v
and cuv is defined as

cuv =
|N(u)∩N(v)|
|N(u)∪N(v)|

. (5)

The clustering coefficient for the whole graph is the average
as given below.

c =
1
n ∑

u∈G
cu, (6)

where n is the number of nodes in G.
Clustering coefficient is used to describe the proportion

that the neighbors of a certain node are also neighbors. The
clustering coefficient of the network reflects the cliquishness
of the mean closest neighborhood of the network. From Ta-
ble 2, clustering coefficient c is 0.2526.

2.3.3. Degree and degree distribution

Degree is not only the simplest and most intuitive at-
tribute of network nodes, but also an important statistical pa-
rameter. The degree of a node is defined as the number of
nodes connected to it. Therefore, intuitively speaking, the
greater the degree of a node, the more the nodes are associated
with it, and the greater the role of its nodes in the network. De-
gree distribution is defined as the random selection of a point
with a probability of k edges. Many empirical studies show
that the degree distribution of a large number of actual net-
works conforms to a power law distribution, and the degree
distribution of one or two kinds of nodes of bipartite networks
also conforms to a power law distribution. The network with
power law distribution of degree distribution is called scale-
free network. Researchers often plot the degree distributions
of complex networks on a double logarithmic scale and look
for the evidence of a linear curve by using the log-transformed
data.[32]

From Table 2, the average degree of OEMs is 85.46 and
the average degree of part suppliers is 3.08. There is a sig-
nificant gap between the average degree of OEMs and part
supplier. This also reflects a larger number of part suppli-
ers than OEMs’. Figure 3 shows the complementary cumu-
lative distributions of OEM degree and part supplier degree.
It is clear even from a superficial visual inspection that the
degree distributions on a log–log scale do not look linear,
and MECN is therefore not scale-free. Maximum-likelihood
method (MLE) can be used to fit a range of possible heavy-
tailed distributions: power law, truncated power law, exponen-
tial and stretched exponential. The MLE fit is used from the
powerlaw package.[33] The fit curves of each distribution are
also shown in Fig. 3. The fitting results are shown in Table 3.
The Kolmogorov–Smirnov distance between the data and the
fit is denoted as D. The smaller the value of D, the better the
fitting is.

Actually, most enterprise nodes have lower degrees and
only a few enterprise nodes have higher degrees. The finding is
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consistent with the current automotive industry market. Most

of part suppliers are small-sized enterprises, and only can col-
laborate with several OEMs. Few firms with high degree are

considered to be hub firms, and they are essential to ensure the
whole network remains functional. If they encounter failures,

the stability of the network will be greatly reduced. While

some low degree nodes’ failures may have little influence on
the whole network performance. It is suggested that managers

should pay more attention to protecting the enterprises with
more collaborators.
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Fig. 3. MLE fit of degree distribution of (a) OEMs and (b) part suppliers.

Table 3. Degree distribution fitting results of empirical MECN.

Distribution p(k) D (OEM) D (part supplier)

Power law k−α 0.2107 0.1309
Truncated power law k−α e−λk 0.0545 0.0372

Exponential e−λk 0.3260 0.0301

Stretched exponential (λk)β−1 e−(λk)β

0.0649 0.0203

From Table 3, the degree distribution of OEMs conforms
to truncated power law with α = 1.0000 and λ = 0.0015. The
degree distribution of part suppliers conforms to stretched ex-
ponential with λ = 0.4260 and β = 0.9185. The MECN is not
a scale-free network.

2.3.4. Assortativity

Assortativity is defined as the tendency for nodes in the
network to form connections preferentially to others similar
to them. Generally, assortativity is important, for something

that affects a single high-degree node can quickly cascade to
other high-degree nodes.[34] A network is said to be assortative
when high degree nodes are, on average, connected to other
nodes with high degree and low degree nodes are, on average,
connected to other nodes with low degree. On the contrary,
it is said to be disassortative. This mechanism has been pro-
posed as the key ingredient for the formation of communities
in networks. To characterize assortativity, the behavior of the
average nearest neighbor’s degree of the firms of degree k is
studied,

knn (k)≡∑
k′

k′P
(
k′ |k

)
, (7)

where P(k′ |k ) is the conditional probability with which a firm
of degree k is connected to a firm of degree k′. Besides, assor-
tativity can be simply measured by the assortative coefficient,
which is defined as the Pearson’s correlation coefficient of de-
grees at either side of an edge.[35] The assortative coefficient r
can be express as

r =
M−1

∑i jiki−
[
M−1 1

2 ∑i ( ji + ki)
2
]

M−1 ∑i
1
2 ( j2

i + k2
i )−

[
M−1 1

2 ∑i ( ji + ki)
]2 , (8)

where ji and ki are the degrees of the vertices at the ends of the
i-th edge, with i= 1, . . . ,M, and M is the total number of edges
in the network. If knn increases with k or r > 0, the network
is assortative. If knn decreases with k or r > 0, the network is
disassortative. If r = 0, the network is non-assortative.

Indeed, the assortativity coefficient r = −0.4803 of the
original MECN is calculated, which indicates the empirical
MECN is disassortative. The reason for this result is that
the MECN is a bipartite network and the number of OEMs
is much smaller than the number of suppliers limited by the
actual situation. In order to better understand its assorta-
tivity, the MECN bipartite network is transformed into one-
mode network. In the previous section, MECN is denoted
as G = {M,S,E} , where M = {m1,m2, . . . ,mi, . . . ,mnM} and
S =

{
s1,s2, . . . ,s j, . . . ,snS

}
are disjoint sets of the OEM nodes

and part supplier nodes respectively, nM and nS are the num-
ber of OEM nodes and part supplier nodes respectively, and
E is the set of edges connecting OEM nodes and part supplier
nodes. Specifically, a projection onto the OEM nodes M re-
sults in a one-mode network where node m is connected to
m′, m, m′ ∈ M, only if there exists a pair of edges (m,s) and
(m′,s) in E such that m and m′ share a common neighbor s∈ S,
in the bipartite MECN. Similarly, in a projection onto the part
supplier nodes S, a node s is connected to a node s′ in the pro-
jection if they share a neighbor m ∈ M. Even though a pair
of OEM nodes m and m′ can share many common neighbors
from the part supplier set S in G, there will be only a single
link connecting such nodes in the projected version. Finally,
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an unweighted one-mode network with no multiple edges be-
tween node pairs and no self-loops is created.[36,37] Figure 4
shows the change of knn as k grows in the one-mode networks.

In Fig. 4(a), it can clearly be seen that knn decreases as
k grows in the OEM one-mode network. But the change of
knn as k grows cannot be judged in Fig. 4(b). Actually, the as-
sortativity coefficient of the one-mode projection network on
OEM is rM =−0.231, the assortativity coefficient of the one-
mode projection network on part suppliers is rS = −0.021. It
is can be seen that both of them are disassortative. In short,
empirical MECN is a disassortative network. Enterprises in
MECN with high link number can lead their communities in
production. They tend to connect to low-degree enterprises in
order to expand the scale of production. And the disassorta-
tive property indicates that the risk spreading is fast and the
coordinated operation is difficult in MECN.
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Fig. 4. Degree correlation in one-mode projection network on (a) OEMs and
(b) part suppliers.

Based on these findings, the MECN is a complex net-
work. It has small average path length and large clustering
coefficient, which indicates small world property. The MECN
is neither a scale-free network nor a random network. What is
more, the network is disassortative.

3. MECN evolutionary model
A great number of empirical studies of networks have

shown that many networks exhibit common topological prop-
erties. Actually, the MECN is a complex network with small-
world and disassortative properties. In order to explore the

evolutionary process of MECN and learn how these topolog-
ical properties arise, the MECN evolutionary model is pro-
posed.

Generally, the preferential attachment is an essential
mechanism to construct the evolutionary model. The most
well-known element is the degree preferential attachment in
the Barabási-Albert model, which stipulates that the probabil-
ity of a new node making a link with an existing node is pro-
portional to the number of links (degree) of the existing node.
That is, the probability pi with which a new node makes a
connection to an existing node i with degree ki is given by

pi =
ki

∑ j∈N k j
, (9)

where N is the set of nodes to which the new node can con-
nect. This simple degree-based attachment is a rich–get–richer
mechanism, where nodes with already high degree are more
likely to acquire more links. However, the Barabási-Albert
model also has some limitations introduced in Section 1. Cor-
respondingly, the fitness preferential attachment mechanism
taking the intrinsic property into account (also including the
node degree) has proved more reasonable. A prominent exam-
ple of fitness-based models is the Bianconi–Barabási model.
The fitness preferential attachment mechanism is

pi =
ki fi

∑ j∈N k j fi
, (10)

where ki represents the degree of node i and fi represents its
fitness. In contrast to the Barabási–Albert model, it is possi-
ble in the Bianconi–Barabási model for a relative newcomer to
overtake an older node in terms of the number of links.

In MECN, enterprises have various intrinsic attributes,
such as geographic location, scale, goodwill, etc. These in-
trinsic attributes play a critical role in attracting collaboration.
That is, enterprises associated with greater economic benefit,
larger scale and more numerous collaborations, are thus natu-
rally more attractive to others.[38] The amalgamation of these
attributes can be defined as fitness. Therefore, constructing an
evolutionary model in which enterprise node fitness is taken
into consideration is more persuasive. Additionally, consid-
ering the fact that the fitness in most of network models is
randomly allocated from a specified probability distribution,
we introduce the entropy-TOPSIS method to calculate fitness
based on the collected empirical attributes and allocate them to
nodes. In this section, firstly, the MECN evolutionary model
based on fitness preferential attachment and entropy-TOPSIS
is proposed. Then, the entropy-TOPSIS method is introduced
into calculate fitness.

3.1. Model description

The MECN evolutionary model is denoted as G =

(M,S,E), where G is the MECN evolutionary model, M =

{m1,m2, . . . ,mi, . . . ,mnM} and S =
{

s1,s2, . . . ,s j, . . . ,snS

}
are

088901-6



Chin. Phys. B Vol. 29, No. 8 (2020) 088901

the OEM node set and the part supplier node set respectively,
and is the set of edges connecting OEM nodes and part sup-
plier nodes. Generally, in the early stages, the network con-
tains relatively few enterprises. Then, owing to the entry of
enterprises and the establishment and ending of cooperative
relationship, the network evolves with time. Correspondingly,
there are the growth of nodes and the link construction and
link deletion in the evolutionary model. Besides, considering
enterprises have various intrinsic attributes which conduce to

attracting collaboration, the node fitness is introduced into the

evolutionary model.

Therefore, an evolutionary model that integrates together

the node growth, fitness preferential attachment, link estab-

lishment, and link deletion is proposed. Before going further,

we give notations used in the model in Table 4. The process

of MECN evolutionary model construction is shown in Fig. 5,

and its specific steps are explained below.

Table 4. Notations used in evolutionary model.

Notation Meaning

t time step of evolution
u0,v0,e0 initial number of OEM nodes, part supplier nodes, and edges respectively
e number of edges
nM ,nS,nE maximum number of OEM nodes, part supplier nodes, and edges respectively
ki,k j degree of nodes i and j respectively
fi, f j fitness of nodes i and j calculated by the entropy-TOPSIS method respectively

dmax s, dmax m
maximum number of part supplier nodes that OEM nodes can connect with
maximum number of OEM nodes that part supplier nodes can connect with

Si j probability of successful connection between nodes i and j
q parameter that affects where the link is deleted (from local-world or global network)
Qi probability of being selected as local-world network for node i

t/  initiate u0 OEM nodes, v0 part supplier nodes   
and e0 edges, OEM nodes randomly connect with part   

supplier nodes and there is only one edge per node

part supplier nodes addition, a new part supplier  

node joins and connects with an existing OEM node 

according to Eq. (10), the number of edges. e++  

new edges generation, a new edge is generated 

between different types of existing nodes according to 

Eq. (11) and Eq. (12), the number of edges. e++   

old edges deletion and new edges generation

end

t++   

begin

generatea random  
number p

an old edgeis deleted randomly  
from the global network, 
the number of edges. e--

an old edge is deleted randomly from the local-   
world network, the number of edges. e--

new edges generation, a new edge is generated between  
different types of existing nodes according to Eq. (11) and  

Eq. (12), the number of edges. e++  

no

yes yes

no

yes

no

e<nE

t>nS↩v0 p<q

Fig. 5. MECN evolutionary model construction process.

(I) Initialization: At t = 0, there are u0 OEM nodes,v0

part supplier nodes and e0 edges between them (u0 = v0 = e0).

The OEM nodes randomly connect with part supplier nodes

and there is only one edge per node.

(II) Part supplier nodes addition: At the t-th time step

(t 6 ns− v0), a new part supplier node joins and connects with

an OEM node. The OEM node is selected according to the

fitness preferential attachment defined by Eq. (10). The prob-

ability Si j of successful connection between the new part sup-

plier node j and the existing OEM node i is

Si j = 1−
k j

dmax n
. (11)
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If the connection fails, an OEM node is reselected and con-
nected.

(III) Generation of new edges: At each time step, a new
edge is constructed between different types of nodes. The se-
lection of the two nodes is based on fitness preferential at-
tachment defined by Eq. (10) and the probability of successful
connection given by Eq. (11). If the connection already exists
or fails, the two types of nodes are reselected and connected.

(IV) Detection of old edges and eneration of new edges:
At the t-th time step (t > ns− v0), an existing edge is deleted
randomly from the global network with probability q or from
the local-world network with probability 1− q. The local-
world network includes an OEM node i and its partners, and
the selected probability Qi according to Eq. (12). Then, a new
edge is constructed as indicated in step (III).

Qi =
dmax m− ki

∑
u0
1 (dmax m− km)

. (12)

After t (t 6 ns− v0) time steps, there are nM (nM = u0)

nodes in M, v0 + t nodes in S, and e0 + 2t edges in E. After
t (t > ns− v0) time steps, there are nM nodes in M, ns nodes
in S, and ns + t edges in E. When the number of edges in the
network reaches the target number nE , the evolutionary model
is constructed to end.

3.2. Entropy weight and TOPSIS

TOPSIS is a technique for solving multiple criteria de-
cision making problems. Applying this method to enterprise
evaluation can obtain the comprehensive evaluation value of
each enterprise. However, the weight of each evaluation index
is predetermined in the calculation, which is strong subjective
and seriously affects the evaluation results. Entropy is a mea-
sure that uses probability theory to measure the uncertainty of
information.[39] The entropy weight method can be adopted
to determine the weight to avoid the effect of subjective fac-
tors. The entropy-TOPSIS method have been applied to the
comprehensive assessment of empirical study.[30,41]

In the MECN evolutionary model, each enterprise has an
intrinsic fitness to attract links. Considering fitness in most
models is randomly allocated from a specified probability dis-
tribution, and obtaining fitness based on empirical enterprise
attributes is more reasonable. Therefore, the entropy-TOPSIS
method is introduced to calculate the fitness. First, the en-
terprise attributes are regarded as evaluation indexes. Then,
the corresponding weight of each evaluation index is obtained
by the entropy weight method. Finally, the TOPSIS method
is used to obtain the comprehensive evaluation value of en-
terprises. The evaluation value can be defined as enterprise

fitness. And the final calculated fitness can be randomly al-
located to nodes in the evolutionary model. The calculation
steps of this method are described as follows.

Step 1 Identify a decision matrix X = [xi j]m×n, i∈ (1,m),
j ∈ (1,n). Assuming that there are m enterprises and n enter-
prise attributes, the evaluation value of attribute j in enterprise
i is xi j. Initial matrix X is as follows:

𝑋 = [xi j]m×n =


x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . . . . . . . .
xm1 xm2 . . . xmn

 . (13)

Step 2 Construct the normalized matrix X ′ =
[
x′i j
]

m×n.
There are two types of standardized methods. When the at-
tributes are of positive-type, the calculation for normaliza-
tion can be expressed as Eq. (14). When the attributes are
of negative-type, the calculation for normalization can be ex-
pressed as Eq. (15),

x′i j =
xi j− xmin

xmax− xmin
, (14)

x′i j =
xmax− xi j

xmax− xmin
. (15)

Step 3 Translate matrix and obtain matrix H = [hi j]m×n.
The calculation of the entropy method involves the calculation
of the logarithm and the value cannot be 0, therefore, the value
of all attributes is shifted rightwards by 1 unit,

hi j = x′i j +1. (16)

Step 4 Construct the standardized matrix H ′ =
[
h′i j
]

m×n.
The formula used is as follows:

h′i j =
hi j

∑
m
i=1 hi j

. (17)

Step 5 Calculate the information entropy of each at-
tribute. Let the entropy value of the j-th attribute be e j, the
matrix of each attribute entropy is 𝐸 = [e j]1×n, where

e j =−
1

lnn

m

∑
i=1

h′i j lnh′i j. (18)

Step 6 Calculate the entropy weight. Each attribute en-
tropy weight can be obtained and composed into a weight vec-
tor 𝑊 =

[
w1 w2 · · · wn

]
and the weight of the j-th attribute

is expressed as w j,

w j =
1− e j

∑
n
j=1 (1− e j)

. (19)

Step 7 Calculate the weighted normalized matrix 𝑉 =

[vi j]m×n,

vi j = hi j×wi j. (20)

Step 8 Determine the positive ideal solution A+ and the
negative ideal solution A−,

A+ =
{

A+
1 ,A

+
2 , . . . ,A

+
j , . . . ,A

+
n

}
, (21)
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A− =
{

A−1 ,A
−
2 , . . . ,A

−
j , . . . ,A

−
n

}
, (22)

where A+
j =

{
max

(
v1 j,v2 j, . . . ,vn j

)
| j ∈ (1,n)

}
and A−j ={

min
(
v1 j,v2 j, . . . ,vn j

)
| j ∈ (1,n)

}
.

Step 9 Calculate the relative distance for enterprise nodes
from the positive ideal solution and negative ideal solution,

d+
i =

{
n

∑
j=1

(
vi j−A+

j

)2
}1/2

, (23)

d−i =

{
n

∑
j=1

(
vi j−A−j

)2
}1/2

. (24)

Step 10 Calculate the relative closeness Di of each alter-
native from the following equation:

Di =
d−i

d+
i +d−i

. (25)

Actually, Di is the comprehensive evaluation score of enter-
prise node i. The higher the value of Di, the better the eval-
uation, the stronger competitiveness is, and the greater the
probability with which the collaborations are obtained will be.
Therefore, the static value Di can be regard as enterprise fit-
ness, fi = Di.

4. Simulation results
The evolutionary model can be evaluated by asking

whether it reproduces certain topological properties of the em-
pirical network. Besides, in order to prove the effectiveness of
the proposed evolutionary model more persuasive, a compara-
tive experiment is conducted. In the comparative experiment,
the fitness preferential attachment is replaced by the degree
preferential attachment defined by Eq. (9), whereas others re-
main the same. The model for comparison is called degree-
based model. In this section, first of all, the parameters of the
model are determined according to the empirical network and
multiple experimental results. Then, the topological proper-
ties of the models are introduced and the effectiveness of the
evolutionary model is proved.

4.1. Parameter setting

Most of the parameter settings of simulation experiments
are set according to our collected empirical database. nM , nS,
and nE representing the total number of OEMs, part suppli-
ers, and connections between them are 245, 6790, and 20938,
respectively. Considering the small portion of OEMs, the
initial number of these parameters are u0 = v0 = e0 = 245.
Besides, considering the maximum degree of two types of
nodes in the empirical network, similar parameters are set to
be dmax m = 950 and dmax n = 30. Enterprise node fitness is
calculated by the entropy-TOPSIS method based on collected
empirical enterprise attributes. And the calculated fitness can
be randomly allocated to nodes in the model.

According to our evolutionary rules, the number of final
edges is nS + t = 20938, the evolutionary time step is calcu-
lated to be t = 14148. Finally, the parameter q affecting the
source of the link deletion (the global or local-world network)
is obtained from multiple simulation experiments. Actually,
we find that q has a great influence on the degree distribution
of OEMs, but little effect on the degree distribution of part sup-
pliers. When q changes from 0 to 1, the degree distribution of
OEMs transforms from the stretched exponential to the trun-
cated power law to power law. While the degree distribution
of part suppliers is always stretched exponential. According to
our results, the value of q is set to be 0.6.

Besides, for the degree-based model in which only node
degree is considered, the evolutionary process of the degree-
based model is the same as that of the proposed evolutionary
model and the parameters also remain the same.

4.2. Model analysis

To validate the effectiveness of the proposed model, a
number of topological properties are considered, e.g., average
path length, clustering coefficient, degree distribution, and as-
sortativity coefficient (both in bipartite network and one-mode
projection network). In addition, a comparative experiment
is conducted in which the fitness preferential attachment is re-
placed by the degree preferential attachment and others remain
the same.

According to the model construction process in the pre-
vious section, the MECN evolutionary model is constructed
(Fig. 6). Besides, the topological properties are explored. The
results of average basic topological properties are shown in
Table 5. From the table, both the evolutionary model and the
degree-based model exhibit small average path length, high
average clustering coefficient, and negative assortativity coef-
ficient. These properties match well to those of the empirical
network. However, comparing the results of the two models in
detail, most of the topological properties are close except the
OEM degree, which indicates that the degree distribution of
OEMs is obviously different.

Fig. 6. MECN evolutionary model visualization. Red nodes are OEMs and
blue nodes are part suppliers.
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Table 5. Results of topological properties.

Topological properties Empirical network Evolutionary model Degree-based model

OEMs 245 245 245
Part suppliers 6790 6790 6790
Edges 20938 20938 20938
Part suppliers per OEM 85.46 85.46 85.46
OEMs per part supplier 3.08 3.08 3.08
Average path length L 3.755 3.760±0.015 3.854±0.015
Clustering coefficient c 0.253 0.224±0.002 0.219±0.02
Assortativity coefficient r −0.480 −0.417± 0.030 −0.534±0.040
Assortativity coefficient rM −0.231 −0.265±0.020 −0.203±0.020
(one-mode projection on OEMs)
Assortativity coefficient rS −0.021 −0.044±0.015 −0.034±0.015
(one-mode projection on part suppliers)
OEM degree Max: 963 Min: 1 Max: 949±1 Min: 1 Max: 600±150 Min: 1
Part supplier degree Max: 23 Min: 1 Max: 22±2 Min: 1 Max: 21±2 Min: 1

Then, root-mean-square deviation (RMSD) is used to
evaluate the performance of the model.[42] The RMSD is fre-
quently used to measure the differences between values gen-
erated by a model and the values actually observed. Smaller
values indicate better model predictive ability. The RMSD is
described as follows:

RMSD =

√
∑

n
i=1 (yi− ŷi)

2

n
, (26)

where ŷ is the generated value, y is the empirical value, n(=

20) is the number of simulation experiments. The RMSD re-
sults are shown in Table 6. It can be concluded that the fittings
of these average topological properties are very well.

Table 6. RMSD results of topological properties.

Topological properties
Evolutionary Degree-based

model model

Average path length L 0.021 0.099
Clustering coefficient c 0.029 0.034
Average degree k 0 0
Assortativity coefficient r 0.066 0.073
Assortativity coefficient rM 0.036 0.032
(one-mode projection on OEMs)
Assortativity coefficient rS 0.036 0.032
(one-mode projection on part suppliers)

The average statistics of the models can typically be tuned
by varying parameter values, however, the shapes of the dis-
tributions are likely to be invariable.[43] Here, the degree dis-
tribution of OEMs and the degree distribution of part suppli-
ers of the evolutionary model, and degree-based model are in-
vestigated. Figure 7 shows the degree distribution of the em-
pirical network, evolutionary model, and degree-based model.
Actually, the degree distribution of OEMs in the evolutionary
model conforms to truncated power law with α = 1.0000 and
λ = 0.0018, whereas in the degree-based model it conforms
to stretched exponential. The degree distribution of OEMs in

the evolutionary model is consistent with the empirical distri-
bution, but not in the degree-based model.

100 101 102 103
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100 101

k

100
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10-2

10-3

10-4

p
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100

10-1

10-2

p
↼k
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(a)

(b)

empirical network
evolutionary model
degree based model

empirical network
evolutionary model
degree based model

Fig. 7. Distributions of the evolutionary model (blue), compared with em-
pirical network (red) and the degree-based model (green), showing (a) the
degree distribution of OEMs, and (b) degree distribution of part suppliers.

Besides, the degree distribution of part suppliers in
the evolutionary model and degree-based model have simi-
lar shapes to empirical distribution, all of them conform to
the stretched exponential. In the evolutionary model, λ =

0.4528±0.02 and β = 0.8706±0.03, and in the degree-based
model, λ = 0.4534± 0.015 and β = 0.8697± 0.02. The pa-
rameters of degree distribution obtained from the simulation
experiments are slightly different. It could be an issue caused
by either the rules of the model or the noises in the empirical
datasets.
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Overall, the proposed evolutionary model shows a good
fitting to empirical network. It reproduces realistic patterns
ranging from basic statistics to critical distributions. The pro-
posed evolutionary model is effective.

5. Conclusions

In this paper, an MECN is built by using empirical data.
Its topology is explored in terms of complex network theory,
and its evolutionary process is studied by constructing an evo-
lutionary model based on fitness preferential attachment and
entropy-TOPSIS. Our results show that the empirical MECN
is a complex network characterized by small-world and disas-
sortative properties. Generally, the topological properties of
MECN critically affect its functional properties, such as ro-
bustness, resistance to attacks, and risk spreading. The small
world property indicates that the enterprises in the MECN
have close relationship and high communicative efficiency
among enterprises. Enterprises can respond quickly to the
market. The disassortative property indicates that the enter-
prises with high numbers of links tend to connect the low-
degree enterprises in order to expand the scale of production.
However, both small-world and disassortative properties indi-
cate that the risk spreading is fast in the MECN. Additionally,
the network is generally resilient against cascading influence
arising from targeted attacks, because the hub nodes are not
connected with each other. Moreover, an evolutionary model
based on fitness preferential attachment and entropy-TOPSIS,
is proposed to depict the evolutionary process of MECN. In
particular, the node fitness in the evolutionary model is ran-
domly allocated from empirical enterprise fitness, which is
calculated by the entropy-TOPSIS method based on collected
enterprise attributes. It is more persuasive than being ran-
domly allocated from a specified probability distribution. Be-
sides, a degree-based model in which only node degree is
taken into consideration, is constructed for a comparison. The
simulation results reveal that the proposed evolutionary model
reproduces certain topological properties of the real MECN.
The effectiveness of the evolutionary model is also verified.

Our results are conducible to researchers better under-
standing the MECN and provide researchers with a founda-
tion for controlling. For future studies, the attributes of enter-
prises we considered above are not comprehensive, and more
attributes should be collected. Moreover, with the enlargement
of outsourcing, the collaboration among enterprises is getting
closer. Once any risk happens to the enterprises, they might
rapidly spread the risk to the associated enterprises, causing
the majority of enterprises to fail to run and even paralyze the
whole MECN, and thus affecting the normal operation of so-
cial economy. According to the results in this paper, we will
analyze and control the risk spreading in MECN, which are
our future work.
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[20] Barabá A L and Albert R 1999 Science 286 509
[21] Perera S, Bell M G H and Bliemer M C J 2017 Appl. Network Science

2 33
[22] Bell M, Perera S, Piraveenan M, Piraveenan M, Bliemer M, Latty T

and Reid C 2017 Sci. Rep. 7 42431
[23] Bianconi G and Barabási A L 2001 Europhys. Lett. 54 436
[24] Li G, Xuan Q and Song Z 2010 IEEE International Conference on In-

telligent Systems and Knowledge Engineering, November 15–16, 2010,
Hangzhou, China, p. 511

[25] Perera S, Perera H N and Kasthurirathna D 2017 Moratuwa Engineer-
ing Research Conference, May 29–31, 2017, Moratuwa, Sri Lanka,
p. 159

[26] Aspembitova A, Feng L, Melnikov V and Chew L Y 2019 PloS One 14
1

[27] Chattopadhyay S and Murthy C A 2017 Inf. Sci. 397 219
[28] Cimini G, Squartini T, Musmeci N, Puliga M, Gabrielli A, Garlaschelli

D, Battiston S and Caldarelli G 2014 International Conference on So-
cial Informatics, November 10–13, 2014, Barcelona, Spain p. 323

[29] Ghadge S, Killingback T, Sundaram B and Tran D A 2010 Int. J. Par-
allel Emergent Distributed Syst. 25 223

[30] Nair A and Vidal J M 2011 Int. J. Production Res. 49 1391
[31] Latapy M, Magnien C and Del Vecchio N 2008 Soc. Networks 30 31
[32] Basole R C and Bellamy M A 2014 Decis. Sci. 45 753
[33] Clauset A, Shalizi C R and Newman M E J 2009 SIAM Review 51 661
[34] Brintrup A, Ledwoch A and Barros J 2016 Logist. Res. 9 1
[35] Newman M E J 2002 Phys. Rev. Lett. 89 208701
[36] Vasques Filho D and O’Neale D R J 2018 Phys. Rev. E 98 022307
[37] Vasques Filho D and O’N E A L E D R J 2019 Networks 11 14
[38] Suo Q, Guo J L, Sun S and Han L 2018 Physica A 489 141
[39] Liu P and Zhang X 2011 Int. J. Production Res. 49 637
[40] Gu T, Ren P, Jin M and Wang H 2018 Disc. & Continuous Dyn.

Systems-S 12 771
[41] Li Y, Zhao L and Suo J 2014 Sustainability 6 4685
[42] Sun X, Lin H and Xu K 2015 Expert Syst. Appl. 42 4229
[43] Sun X, Lin H, Xu K and Ding K 2015 Scientometrics 104 43

088901-11

https://doi.org/10.1016/j.rcim.2016.05.005
https://doi.org/10.1108/02635570010301179
https://doi.org/10.1016/j.physa.2005.05.044
https://doi.org/10.1080/00207543.2016.1262083
https://doi.org/10.1080/00207543.2016.1262083
https://doi.org/10.1103/PhysRevE.70.036106
https://doi.org/10.1103/PhysRevE.70.036106
https://doi.org/10.1016/j.physa.2007.04.045
https://doi.org/10.1088/1742-5468/2006/01/P01010
https://doi.org/10.1088/1742-5468/2006/01/P01010
https://doi.org/10.1016/j.dss.2015.12.005
https://doi.org/10.1016/S0272-6963(02)00025-6
https://doi.org/10.1109/TASE.2010.2071414
https://doi.org/10.1109/TASE.2010.2071414
https://doi.org/10.1016/j.physa.2017.01.036
https://doi.org/10.1002/sys.21238
https://doi.org/10.1108/01443571311307343
https://doi.org/10.1108/01443571311307343
https://doi.org/10.1179/1942787515Y.0000000007
https://doi.org/10.1109/JSYST.2015.2425137
https://doi.org/10.1088/1674-1056/25/3/030504
https://doi.org/10.1088/1674-1056/25/3/030504
https://doi.org/10.1088/1674-1056/26/11/110505
https://doi.org/10.1088/1674-1056/26/11/110505
https://doi.org/10.1088/0256-307X/32/6/068901
https://doi.org/10.1088/0256-307X/32/6/068901
https://doi.org/10.1038/30918
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1007/s41109-017-0053-0
https://doi.org/10.1007/s41109-017-0053-0
https://doi.org/10.1038/srep42431
https://doi.org/10.1209/epl/i2001-00260-6
https://doi.org/10.1109/ISKE.2010.5680780
https://doi.org/10.1109/ISKE.2010.5680780
https://doi.org/10.1109/ISKE.2010.5680780
https://doi.org/10.1109/MERCon.2017.7980474
https://doi.org/10.1109/MERCon.2017.7980474
https://doi.org/10.1109/MERCon.2017.7980474
https://doi.org/10.1371/journal.pone.0219346
https://doi.org/10.1371/journal.pone.0219346
https://doi.org/10.1016/j.ins.2017.02.057
https://doi.org/10.1007/978-3-319-15168-7_41
https://doi.org/10.1007/978-3-319-15168-7_41
https://doi.org/10.1080/17445760903429963
https://doi.org/10.1080/17445760903429963
https://doi.org/10.1080/00207543.2010.518744
https://doi.org/10.1016/j.socnet.2007.04.006
https://doi.org/10.1111/deci.12099
https://doi.org/10.1137/070710111
https://doi.org/10.1007/s12159-015-0128-1
https://doi.org/10.1103/PhysRevLett.89.208701
https://doi.org/10.1103/PhysRevE.98.022307
https://doi.org/10.1016/j.physa.2017.08.002
https://doi.org/10.1080/00207540903490171
http://doi.org/10.3934/dcdss.2019051
http://doi.org/10.3934/dcdss.2019051
https://doi.org/10.3390/su6074685
https://doi.org/10.1016/j.eswa.2015.01.020
https://doi.org/10.1007/s11192-015-1597-3

	1. Introduction
	2. Empirical investigation of MECN
	2.1. Data collection
	2.2. Construction of MECN
	2.3. Topological properties of MECN
	2.3.1. Average path length
	2.3.2. Clustering coefficient
	2.3.3. Degree and degree distribution
	2.3.4. Assortativity


	3. MECN evolutionary model
	3.1. Model description
	3.2. Entropy weight and TOPSIS

	4. Simulation results
	4.1. Parameter setting
	4.2. Model analysis

	5. Conclusions
	References

